

Sustainability Education at HKUST

2023 Sustainability Course Evaluation Report

Last updated: April 2025 Report developed by the Sustainability Education Advisory Group

The strategic vision for HKUST is to become a regional leader in sustainability education with a global outreach. As an on-going effort to achieve the Sustainable education goal of ensuring that *all students gain a solid understanding of sustainability concepts and graduate with the capacity and commitment to solve problems locally and globally*, The Sustainability Education Advisory Group (SEAG) has been conducting this analysis annually since 2018 to identify opportunities and gaps in the existing provision of sustainability-relevant courses (process described in Appendix A), providing a basis for the development of sustainability education across Schools and programs.

This report documents the on-going efforts of Sustainability Education Advisory Group (SEAG) to achieve this goal, for assessing the breadth and depth of sustainability education across the curriculum at HKUST. This report includes:

- 1. Updated results of the sustainability coverage across the 2022/23 Undergraduate (UG) course catalogue;
- 2. Updated sustainability course inventory; and,
- 3. Key findings.

Highlights from the report:

- 95% of graduates had enrolled in at least 1 sustainability course during their undergraduate studies.
- In 2022/23, Sustainability Focused or Related courses represented roughly 7% of the approved new courses.
- By distribution, all schools and most departments include at least one listed course.
- In terms of exposure to sustainability concepts, we note that 68% of recent graduates are leaving with a "strong" exposure (completing two or more Sustainability Focused courses). 27% of all graduates completed at least 1 course that is related to Sustainability. Only 5% of students graduated with no course exposure to sustainability, which remains consistent with the last years.
- A total of 71 newly offered courses were reviewed and an addition of five new courses were added to the Sustainability course inventory, representing 7% of the newly offered course in the academic year of 2022/23.

Evaluation of Sustainability Exposure

With the help from Academic Registry (ARO), we retrieved the enrolment information for recent graduates (defined as any students who graduated between the fall of 2022 and the summer of 2023), and we mapped that information against the 96 courses that were identified as "sustainability focused" and "sustainability related." The information was then examined in order to determine how much exposure students at HKUST had to sustainability principles.

	Sustainability Focused	Sustainability Related
1000 level	19	9
2000 level	17	3
3000 level	12	11
4000 level	13	12
TOTAL	61	35

The courses are distributed somewhat evenly by level (Table 1).

Table 1: Updated Sustainability Course Designations (distribution by level) as of 2023 Summer

In the academic year of 2022/23, 2,314 graduates (95.1%) had enrolled in at least 1 sustainability course during their undergraduate studies. Of those, 653 graduates (26.8% of all graduates) completed at least 1 course that is related to Sustainability. 1,661 graduates (68.3% of all graduates) completed 2 or more Sustainability Focused courses.

Based on this preliminary result, we can assume that at least 26.8% of graduates are potentially gaining an elementary understanding of sustainability, while 68.3% are potentially gaining a medium to substantial exposure of sustainability concepts by taking two or more courses. And around 4.9% of students are potentially receiving little to no understanding or exposure to sustainability upon graduating—at least not in their coursework.¹

¹ For students to gain a strong exposure of sustainability concepts, a student should complete at least 2 "sustainability focused" courses. While students who completed less or only enrolled in "sustainability related" courses can be considered as having an elementary to medium exposure to sustainability.

There are numerous other ways to gain exposure to sustainability concepts at HKUST; HKUST Connect, for example, provides activities and service-learning opportunities that are aligned with UN Sustainable Development Goals (SDGs). There are also many Undergraduate Research Opportunities Program (UROP) projects that are related to sustainability which are not included in this analysis.

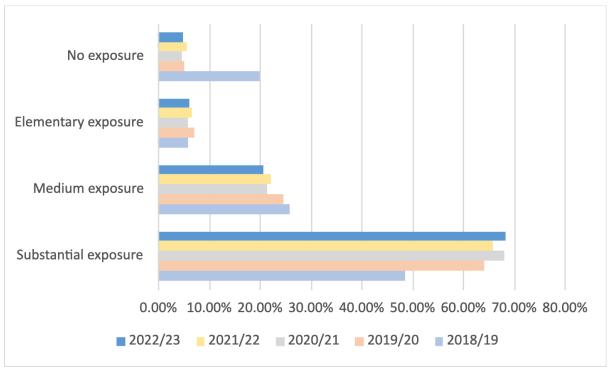


Figure 1. Level of Exposure to Sustainability Education of Graduates over the Years

According to Figure 1, it is apparent that since the academic year of 2018/19, there has been minimal changes in the overall distributions of exposure to Sustainability.

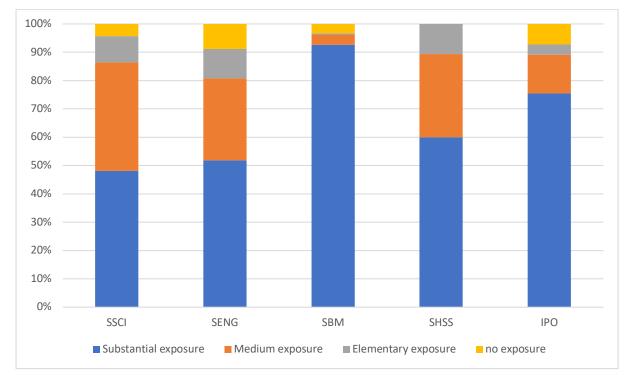


Figure 2. Level of Exposure to Sustainability Education of Graduates by School (2021/2022 Academic Year)

<u>Legend:</u> SSCI: School of Science, SENG: School of Engineering, SBM: School of Business & Management, SHSS: School of Humanities & Social Science. IPO: Interdisciplinary Programs Office

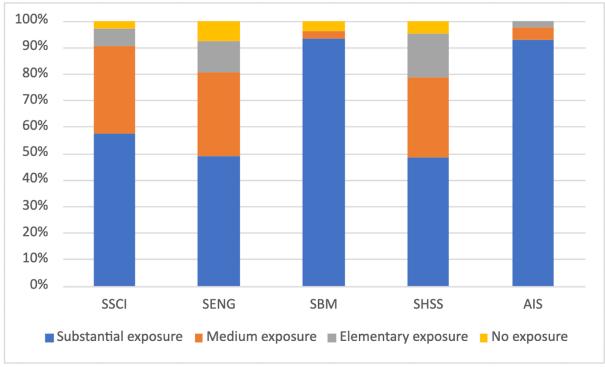


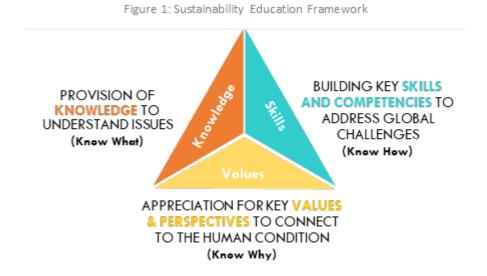
Figure 3. Level of Exposure to Sustainability Education of Graduates by School (2022/2023 Academic Year)

<u>Legend:</u> SSCI: School of Science, SENG: School of Engineering, SBM: School of Business & Management, SHSS: School of Humanities & Social Science. AIS: Academy of Interdisciplinary Studies

With reference to Figures 2 and 3, for both 2021/22 and 2022/23 academic year, SBM (92.7% & 93.4% respectively) has the highest percentage of graduates with substantial exposure to sustainability in comparison to the other schools for both academic years, followed by AIS (75.5% & 92.7%). In the 2022/2023 academic year, there is a noticeable increase in students gaining substantial exposure to sustainability in AIS courses.

Conclusion

The overall result shows that a high percentage of graduates are receiving medium to substantial exposure to sustainability concepts. However, a small portion of graduates are still graduating with no exposure to sustainability. This demonstrates that there is clear work still needed to ensure that *all students* graduate with a solid understanding of sustainability concepts.


Appendix A: Process of Identifying Relevant Courses

Determining Course Criteria

Sustainability education is the foundation for preparing students to meet the challenge of *sustaining human thriving over time and within planetary boundaries*. As documented in the first Evaluation report in June 2018, SEAG has undertaken several exercises to define the terms relating to sustainability, sustainability education, and sustainability courses.

SEAG agreed that sustainability education is built through the interplay of:

- Relevant knowledge and understanding of the issues, supported by...
- An appreciation for values and perspectives, creating the foundation to build...
- The skills and competencies necessary to address the challenge of a sustainable future

The SEAG also further developed a sub-list of criteria to help in evaluating core areas that are associated with sustainability education. The list of criteria is further broken down into key concepts, as detailed in Appendix B.

<u>Values</u>		Knowledge and Understanding		Skills and Competencies	
	Human responsibility within the environment Human responsibility within	5.	Natural limits Business and economics Science and technology		Systems thinking Collaboration & communication
	society Human behaviour		Planning and design Governance		Futures thinking Critical thinking & complex problem solving

Sustainability Course Inventory Update

As an on-going effort for assessing the breadth and depth of sustainability education across the curriculum at HKUST, we have evaluated all our existing undergraduate courses against the list to develop a sustainability course inventory. This report will provide an update on the annual exercise to add the newly available sustainability courses to the course catalogue for the academic year 2022/23.

Preliminary Evaluation

The evaluation process starts with a preliminary review which includes identifying any keywords or concepts in the course descriptions which suggest the course may cover sustainability concepts throughout its delivery. Apart from courses that had keywords in their description which overlap with the pre-defined sustainability course criteria, courses with descriptions itself suggesting that it may be sustainability related were also shortlisted for further investigation.

Faculty Self-Assessment Exercise

In order to assess the shortlisted courses and ensure they are properly designated as "sustainability focused" or "sustainability related" courses, each course instructor is invited to complete a selfassessment survey which asks them to provide detailed information of their courses. The survey is developed based on the previously defined sustainability criteria and helps clarify how much class time is dedicated to teaching sustainability concepts.

The courses are separated into two categories: "sustainability focused," and "sustainability related."

- <u>Sustainability focused courses</u> these courses may be broad and cover a wide breadth of sustainability concepts, content, issues, and contemporary thinking, or they may be narrowly focused and address one or more sustainability issues or concepts in depth. In both cases, the course is primarily focused on sustainability.
 - ✓ A focused course must concentrate on sustainability in at least 75% of class time, and incorporate elements of sustainability criteria within the course material (readings, discussions, and assignments).
- 2. <u>Sustainability related courses</u> these courses are focused on a topic other than sustainability, but have sustainability ideas, principles, or content embedded within specific parts of the curriculum.
 - ✓ A sustainability related course spends at least 25% of class time covering one or more of the sustainability criteria within the course material (readings, discussions, and assignments).

Appendix B: Detailed Sustainability Criteria

	Criteria	Key Concepts
	Human responsibility within the environment Exploring the morality underlying how humans interact with natural surroundings, particularly through the lens of fairness and responsibility for future generations	 Environment-related Sustainable Development Goals Environmental justice Valuing eco-system services for future generations Ecological citizenship in terms of protection of the public environmental good Appreciation, empathy, and nurturing of environmental values
	Human responsibility within society <i>Exploring the social factors that limit human</i> <i>thriving and global quality of life</i>	 Social justice and responsibility Social-focused Sustainable Development Goals Universal Declaration of Human Rights Poverty reduction Equity (e.g., income distribution, Gini coefficient) Gender equality Actions that degrade human well-being
VALUES	Human behaviour Exploring how culture, social networks, and personal identity can shape human behaviours in ways that impact our ability to act in sustainable ways	 Institutional theory and dynamics of social change Behaviour economics Change management Strategies for pro-environmental behaviors (e.g., Community-Based Social Marketing) Environmental psychology Reflecting upon diverse perspectives (e.g., moral relativism, social norms, identities)
	Natural limits Exploring the finite capacity of natural ecosystems (including the global ecosystem) and their ability to support human needs	 The Anthropocene The biosphere, ecological risks, biodiversity Understanding of planetary systems (air, water, or soil) Food systems Demographic trends Natural capital and limits to growth
	Business and economics Exploring the market conditions that create "market failures" with respect to the environment or society, and examining business and economic strategies that can better maintain the integrity of ecosystems	 The circular economy Sustainability business strategies (e.g., auditing, reporting, green finance) Tragedy of the commons, externalities, or other market failures Global patterns of production and consumption
	Science and technology Exploring the role of basic science and technology (broad and individual technologies) specifically in mitigating harmful impacts to humans and the natural world	 Transitions to renewable, zero-carbon energy Green technologies to preserve oceans, forests, and agriculture Technologies to generate efficiency, conservation, and productivity Mitigating pollution, waste, and effluence Smart cities strategies
KNOWLEDGE	Planning and design Exploring concepts from local and regional planning, infrastructure development, and product design to mitigate harmful impacts to humans and the natural world	 Sustainable urban environments Green building design Product design for sustainability outcomes Urban infrastructure (e.g. transport, waste management)

	Criteria	Key Concepts
	Governance Exploring how legal frameworks and government policies impact society and the natural world	 Political and economic organisations Policy for sustainability (e.g., codes, standards, and regulations) Governing for public good (e.g., public investment, incentives, public relations campaigns) Legal frameworks (e.g., property rights, trade agreements)
	Systems thinking Building a holistic perspective, recognising interconnectedness and interdependence across multiple scales	 Resilience and robustness System dynamics (e.g., feedback loops, tipping points) Unanticipated consequences and trade-offs Qualitative / quantitative systems analysis Life-cycle thinking and whole-life cost analysis
	Collaboration & communication Building interdisciplinary thinking and a capacity to work with others to resolve sustainability problems	 Communicating for sustainability outcomes Negotiation, mediation, or conflict resolution Team-building for sustainability causes On/off-site experiential learning Stakeholder engagement
	Futures thinking Building an orientation to the long-term, with the ability to anticipate future challenges, risks, and opportunities	 Assessing sustainability-related risks Forecasting / backcasting Scenario planning Simulation modelling Strategic planning Adaptation and mitigation strategies
SKILLS	Critical thinking and complex problem- solving Building a foundation for evaluating the credibility of data and ideas, and the capacity to develop and implement meaningful solutions	 Analysis of news cycles and media depictions of events Objective development of judgements and persuasive arguments Principled reasoning Multi-criteria assessment models Impact assessment methods Creativity and innovation Critical data analysis and interpretation

SKILLS

Appendix C: Updated Sustainability Courses

(Newly added courses this year are highlighted using coloured text, removed courses are marked in italic light brown text)

	OCUSED	SUSTAINABILITY RELATED		
CENG4130	Plant Design and Economics	ACCT1010	Accounting, Business and Society	
CENG4720	Environmental Impact Assessment and Management Systems	CENG3150	Integrated Chemical Process and Product Design	
CENG4912	Chemical and Environmental Engineering Project	CENG3230	Reaction and Reactor Engineering	
CHEM1004	Chemistry in Everyday Life	CENG4710	Environmental Control	
CIVL/ENVR1150	Climate Change Impacts and Extreme Weather Events	CHEM4310	Environmental Chemistry	
CIVL1140	Environmental Quality Control and Improvement	CHEM4320	Environmental Analytical Chemistry	
CIVL1170	Big History, Sustainability and Climate Change	CIVL1160	Civil Engineering and Modern Society	
CIVL1210	Fundamental of Green Buildings	CIVL2410	Environmental Assessment and Management	
CIVL3420	Water and Wastewater Engineering	CIVL3610	Traffic and Transportation Engineering	
CIVL3510	Hydrosystems Engineering	CIVL3910	Smart Infrastructure Sensing and Data Analytics	
CIVL4450	Carbon Footprint Analysis and Reduction	CIVL4100H	Water, Energy and Climate Challenges in Smart Cities	
CIVL4460	Process Design of Environmental Engineering Facilities	CIVL4440	Environmental Systems Analysis	
ECON4434	Economic Development and Growth	CIVL4620	Transportation System Operations	
ENTR3030	Social Innovations & Entrepreneurship	ECON2310	Introductory Environmental and Health Economics	
ENVR/ECON /SOSC2310	Introductory Environmental and Health Economics	ENEG4210	Optimization of Energy Systems	
ENVR1030	Environment and Health	ENEG/MECH3 110 /AMAT3590	Materials for Energy Technologies	
ENVR1040	The Environment and Society - A Comprehensive Perspective	ENGG1110	Engineering Solutions to Grand Challenges of the 21st Century	
ENVR1050	The Sustainable Citizen	ENGG1130	The Impact and Value of Technology Innovation	

	OCUSED	SUSTAINABILITY RELATED	
ENVR1070	Thinking Big: Systems Thinking for Environmental Problems	ENGG2990J	Systems Design Engineering
ENVR1080	The Smart Consumer - Uncovering the Hidden Story behind the Product Label	ENTR1001	Entrepreneurship 1001: Building Your Own Future
ENVR2002B	Life Cycle Analysis	ENVR2090	Environmental Laboratory
ENVR2010	Environmental Science Fundamentals	ENVR3220	Energy Resources and Usage
ENVR2020	Urban Air Pollution	ENVR/CIVL44 80	Climate Modelling and Risk Assessment
ENVR2040	Life Cycle Assessment	ENVR4010D	Independent Study in Environment Issues
ENVR2050/CORE 2942	Sustainability Thinking	ENVR4320	ESG Management and Reporting
ENVR2060/CORE 2943	From Trash to Treasure: Managing Waste to Resources	ENVR4330	Environmental Geographical Information System
ENVR3003	Green Buildings and Energy Efficiency	ENVS3004	Global Climate Change
ENVR3010G	Sustainability Thinking	ENVS4001	Environmental Impact and Risk Assessment
ENVR30100	Sustainable Urban Development and Responses to Climate Change	ENVS4905	Marine Molecular Biology and Ecology
ENVR3110	Sustainable Development	HUMA1000E	Cultures and Values: Freedom, Justice, and the Good
ENVR3310	Green Business Strategy	IELM/IEDA215 0	Product Design
ENVR3410	Economics for Environmental Policy and Management	MECH3420	Engineering Materials II
ENVR/CIVL4470	Air Quality Control and Management	OCES1001	The Earth as a Blue Planet
ENVS2001	Environmental Conservation and Sustainability in Practice	OCES3201	Biological Oceanography
ENVS2004	Introduction to Ocean Science	PHYS1001	Physics and the Modern Society
ENVS4301	Environmental Conservation	PPOL3210	Energy Policy
FINA4929Q	Responsible Finance	SCIE1120	Chemistry and Life
HUMA2595	Science, Technology and Modern Life	SOSC3880	Social Inequality and Social Mobility

SUSTAINABILITY F	OCUSED	SUSTAINABILITY RELATED
HUMA2597	Environmental History	
HUMA2621	Culture and Environment	
HUMA2623	Cultural Sustainability in South China	
ISDN2200	Systems Thinking and Design	
ISDN4000J	Introduction to EcoDesign	
ISOM1700	Critical Issues in Business Operations	
LIFS/OCES2011	A Practicum on Wetland Conservation	
LIFS/OCES1030	Environmental Science	
MARK1220	Marketing and Society	
MECH1902	Energy Systems in a Sustainable World	
MECH1905	Buildings for Contemporary Living	
MECH1906	Mechanical Engineering for Modern Life	
MECH4000N	Solar Energy Conversion Technology	
MECH4350	Indoor Air Quality in Buildings	
MGMT2010	Business Ethics and the Individual	
MGMT2130	Business Ethics & Social Responsibility	
MGMT3160	Environmental Business Strategies	
MGMT3170	Managing CSR (Corporate Social Responsibility)	
OCES1010	Principles and Applications of Environmental Science	
OCES3302	Marine Pollution Tracking	
OCES4320	Marine Toxicology	
PHYS1003	Energy and Related Environmental Issues	
SOSC1860	Population and Society	
SOSC2330	Environmental Politics and Policy	
SOSC3260	Sustainability Science: Problems and Perspectives	

SUSTAINABILITY FOCUSED		SUSTAINABILITY RELATED
SOSC3540	Psychology of Environmental Sustainability	
SOSC4290	China's Sustainable Development	
SUST1000/1010	Introduction to Sustainability	